

Faruq U. P.^{1*}, Ezikanyi G.K.¹, Abdulmajid S.¹, Babalola BS.², Alawode R.A^{2,3}, Abdulkareem M.¹, Musa R.¹, Omebo K.I.¹, Adeniyi A.K.⁴

¹Department of Biochemistry, Federal University of Technology, Minna-Niger state, Nigeria ²Department of Chemistry, Federal University of Technology, Minna-Niger state, Nigeria ³Forestry research institute of Nigeria-Southern Guinea Research Station, Mokwa, Niger State, Nigeria ⁴Department of Animal Biology, Federal University of Technology, Nigeria

*Corresponding Author: Faruq U. P., Department of Biochemistry, Federal University of Technology, Minna-Niger state, Nigeria, Email: abukauth2011@yahoo.com

ABSTRACT

This review was an Ethno-botanical survey of plants with Antidiabetic properties used by traditional practitioners in Nigeria. A comprehensive literature review was conducted via consultation of different scientific journals relevant to the study from the internet. With case studies in some geopolitical zones. Twenty-five (25) plants from north central, forty-nine (49) plants from North West, one hundred and thirty-five (135) plants from south west and five (5) plants from South East For south west only twenty-five of the most ranked plants were presented in this study. In conclusion, this review documented the rich wealth of knowledge and usage of plants for the treatment of diabetes in Nigeria. The paper will not only serve as a source of information but will also help to make the knowledge accessible for further drug screening and development, and at the same time underlines the need for biodiversity conservation of this traditional wealth.

INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder which occurs as result of inability of the body to produce sufficient insulin, or inability of the body to utilize insulin (WHO, 2006). It is a disorder that cuts across carbohydrates, fats, and lipids metabolism and is characterized by a high level of fasting blood sugar (Marx, 2002). The manifestation of the disease includes; prolong hyperglycemia, development of diabetes-specific micro vascular symptoms in the retina, glomerulus and peripheral nerve which eventually results in serious complications affecting various organs like the kidneys, arteries and eyes (Brownlee et al., 2001) ;(Mehdi et al., 2009). A report by the International Diabetes Foundation in (2017) showed that, as at 2015, the total number of people living with diabetes is 415 million (adult aged 20-79) with a projected increase of up to 642 million by 2040 (IDF, 2017). In Nigeria, of the over 180 million populations, 40,329 diabetes related deaths were recorded and had 846.3 adults' undiagnosed and 1.7 million adults between the ages of 29-70 years being affected by the disease which amounts to 2.4% of the population (IDF, 2017). There is no known cure for diabetes currently; however significant progress has been made in the management of diabetes by oral hypoglycemic agents (Oyedemi et al., 2009). Despite this progress, the search for new drugs continues because the existing synthetic drugs have several limitations including cost, resistance and availability (Matheka and Demaio, 2013).

Africa is blessed with varieties of natural product for healing practice, with several scientific validation of their activities against different diseases (Lawal et al., 2015; 2016; Ibrahim et al., 2017). Many herbal medicines have been recommended for the management of diabetes mellitus (Ayodhya et al., 2010). Traditional plant management has been used throughout the world for the therapy of diabetes mellitus. The use of medicinal plants as form of traditional healing in the management of diabetes mellitus has been documented in history; this is due to the hypoglycemic and other beneficial properties of such plants, as reported in scientific literatures (Donga et al., 2011). As a result of the high demand of natural products, scientists are investigating various plant species for potential cures. This includes an initial ethno-botanical study to ascertain the most frequently utilized plant species and to further validate their use scientifically (Igoli et

al., 2005). The herbal drugs with anti-diabetic activity are yet to be commercially formulated as modern medicines, even though they have been acclaimed for their therapeutic properties in the traditional systems of medicine (Ayodhya et al., 2010).

Currently, medicinal plants continue to play an important role in the management of diabetic mellitus, especially in developing countries, where many people do not have access to conventional anti-diabetic therapies (Grover et al., 2002; Achaya and Shrivastava, 2008). Nigeria, the most populous country in the African continent with a population of over180million, is divided into six geo-political regions (North Central, North-East, North West, South-South, South East and South West) with 36 states and a total of 774 local government areas (Millar et al., 2014). The country is endowed with biodiversity of medicinal plants which are used in the African traditional system of medicine for the management of different diseases (Gbile and Adesina, 1987; Ajose, 2007). In a recent review (Lifongo et al., 2014), the economic/ traditional uses of some of these medicinal plants of Nigeria have been found to be correlated with their biological activities.

However, less attention has been given to this section when compared to plethora of information available in other systems of medicine e.g. India and China. The country has more than 250 different ethnic groups living together. Among the ethnic groups, Hausa and Fulani are the two major tribes which are most commonly found in the north west of the country (Adekunle and Otolorin, 2000) (Abubakar et al., 2007). The medicinal plant used in management of diabetes has been as reported by various ethno-botanical survey conducted in the different geopolitical zones of the country (Aiyeloja and Bello, 2006) ; (Onakpa and owoleke, 2010; Soladoye et al., 2012) ; Oyedemi et al., 2009; Shakir et al., 2015).

MATERIALS AND METHOD

A comprehensive literature review was conducted via consultation of different scientific journals relevant to the study from the internet. Words like medicinal plants, treatment of diabetes, geopolitical zones of Nigeria were used in conducting the search. Where articles on the geopolitical zone could not be obtained, case study of particular state within such geopolitical zone was obtained.

RESULTS

In all, 118 plant species were encountered across the different geopolitical zones. Twentyfive plants from North Central (Table 1), forty nine plants from North West (Table 2), one hundred and thirty-two plants from south west (Table 3) and five plants from South East (Table 4). For South West, only twenty five of the most ranked plants were presented in this study

Table1. List of traditional medicinal plants used by the traditional medical practitioners for the treatment of diabetes in North-central Nigeria.

PLANT NAME	LOCAL NAME	BOTANICAL NAME	FAMILY
Onion	Albasa	Alluvium cepa	Liliaceae
Lemon	Lemun tsami	Ctrus medica	Rutaceae
Locust bean	Dorowa	Parkia biglobosa	Mimosaceae
Egyptian priest	Lalle	Lawsonia inermis	Lythraceae
Shea butter	Kade	Vitillarta paradoxa	Sapotaceae
Neem	Dogon yaro	Azadirachata indica	Meliaceae
Desert date	Aduwa	Balanitesaegyptiaca	Zygophyliaceae
Black plum	Dunya	Vitex gekowskii	Verbenaceae
Camel foot tree	Kalgo	Bauhinia reticulate	Casalpiniaceae
Egyptian mimosa	Bagaruwa	Acacia nilotica	Mimosaceae
Tree of life	Baure	Ficus sycomorus	Moraceae
Garlic	Tafarnuwa	Allium sativum	Liliaceae
Buffalo	Magarya	Zizyphus mucronata	Rhamnaceae
Corn cob cactus	Nonon kurciya	Euphorbiaconvuludiodes	Euphobiaceae
Loin cloth fig	Cediya	Fiscus thonnigii	Moraceae
Sweet potatoes	Dankali	Ipomoea batatas	Convolulaceae
Guava	Gwaiba	Psidium guajava	Myrtaceae
Cotton	Auduga	Gossypium hirsutum	Malvaceae
Coffee senna	Zangazanga	Cassia occidentalis	Fabaceae
Drum stick tree	Zogale	Moringa oleifera	Moringaceae
Giant fern	Marke	Angeissusleiocarpus	Combretaceae

African Mahogany	Madaci	Madaci	Meliaceae
Sodom apple	Tunhahiya	Calotropis procera	Asclepiadaceae
Bitter leaf	Shuwaka	Vernoniaamygdalina	Asreraceae
Mango	Mangoro	Magnifera indica	Anacardiaceae

Source: Onakpa and Owoleke, 2010

Table2. List of traditional medicinal plants used by the traditional medical practitioners for the treatment of diabetes in Sokoto. North-west Nigeria

PLANT NAME	LOCAL NAME	BOTANICAL NAME	FAMILY
Tamarind	Tsamiya	Tamarindus indica	Leguminoseae
-	Taro	Combretum sericeum	Combretaceae
Boire	Taura	Detarium senegalense	Leguminseae
African peach	Tafashiya	Sarcocephalus russeggeri	Rubiaceae
Violet tree	Sanga-sanga	Cassia occidentalis	Caesalpinaceae
Coffee senna	Sanya	Securidacalongipe dunculata	Polygalaceae
Moshi medicine	Sabara	Guiera senegalensis	Combretaceae
Axle wood tree	Marke	Anogeissus leiocarpus	Combretaceae
Mango	Mangwaro	Mangifera indica	Anacardiaceae
W. African laburnum	Malga	Cassia sieberiana	Caesalpinaceae
A.copaiba balsam	Majee	Daniellia oliveri	Leguminoseae
Ujube fruit	Magarya	Zizyphus jujube	Rhamnaceae
African mahogany	Madacci	Khayasene galensis	Meliaceae
Nigeria grass	Kyasuwa	Pennisetumpedicellatum	Gramineae
Calabash	Kwarya	Crescentia cujete	Bignoniaceae
Baobab	Kuka	Adansonia digitata	Malvaceae
-	Kizni.	Bridelia ferruginea	Euphobiaceae
-	Kasheshe	Heeria insignis	Anacardiaceae
King tuber mushroom	Katala	Pleurotus tuber-regium	Pleurotaceae
Water melon	Kankana	Citrullus lanatus	Cucurbitaceae
Hair potato	Kamumuwa	Dioscorea bulbifera	Dioscoreaceae
Camel'sfoot	Kalgo	Piliostigma reticulatum	Caesalpineacea
American waterlily	Kainuwa	Nymphaea odorata	Nymphaeaceae
Hairy indigo	Mashekiya	Indigofera hirsute	Fabaceae
Sand paper tree	Ararrabii	Commiphora kerstingii	Burseraceae
Sand paper tree	Borai	Ficus exasperate	Moraceae
-	Gardaye	Acacia albida	Leguminoseae
Black plum	Dunya	Vitexdoniana	Verbenaceae
Red robber tree	Gamji	Ficus platyphylla	Uritricaceae
African cucumber	Garahuni	Momordica balsamina	Curcubitaceae
Olive	Faru	Odina barteri	Anacardiaceae
Africa locus bean	Dorawa	Parkia fillicoidea	Leguminoseae
Neem	Dogon yaro	Azadarachta indica	Meliaceae
	Dandana	Schwenckia americana	Solanaceae
Barbados nut	Cini dazugu	Jatropha curcas	Euphobiaceae
Black afara	Baushe	Terminalia macroptera	Combretaceae
Egyptian wild	Bagaruwa	Acasia nilotica	Mimosaceae
Soap berry tree	Aduwa	Balanites aegyptiaca	Zygophyllaceae
Zakara Rosarypea	Idon	Abrus precatorius	Leguminoseae
Neutral henna	Collad	Cassia obovata	Leguminoseae
Frankincense tree	Hano	Boswellia dalzielii	Burseraceae
A.custard-apple	Gwadda-daji	Annona senegalensis	Anonaceae
Pawpaw	Gwadda	Carica papaya	Papayacea
Doum palm	Goriba	Hyphaene thebaica	Palmeae
African fan palm	Giginya	Borassus flabellifer	Palmeae
Winter thorn	Gawo	Acacia macrostachya	Leguminoseae
	Geza	Combretum altum	Combretaceae
Waterleaf	Gaudi	Talinumtri angulare	Portulacaceae

Source: Tijjaniet al., 2015

PLANT NAME	LOCAL NAME	BOTANICAL NAME	FAMILY
W. African Black wood	Paran	Dalbergia welwitschii	Leguminosae - Papilionoideae
	Tanjarin	Citrus medica	Rutaceae
Bitter orange	Osan jagun	Citrus aurantum	Rutaceae
Lime	Osan wewe	Citrus aurantifolia	Rutaceae
Ficus	Opoto	Ficus capensis	Moraceae
Sand paper leaf	Epin	Ficus asperifolia	Moraceae
Water melon	Egusi-baara	Citrullus lanatus	Cucurbitaceae
Bitter gourd	Egusi bara	Citrullus colocynthis	Cucurbitaceae
Pseudo colocynth	Tagiri	Adenopus breviflorus	Cucurbitaceae
Guinea-fowl's crest	Agbari etu	Alafia barteri	Apocynaceae
Rauvolfia	Asofeyeje	Rauvolfia vomitoria	Apocynaceae
Stoolwood	Ahun	Alstonia boonei	Apocynaceae
Arrow poison	Sagere	Strophantus hispidus	Apocynaceae
Cascarilla	Eru	Croton lobatus	Euphorbiaceae
	Ira Ira	Bridelia ferruginea	Euphorbiaceae
Walnut	Asala	Tetracarpidium conophorum	Euphorbiaceae
	Fehinsowo	Phyllanthus niruri	Euphorbiaceae
Christmas bush	Ipa	Alchornea cordifolia	Euphorbiaceae
Okan lumber	Olosan	Cylicodiscus gabunensis	Leguminosae - Mimosoideae
	Itipase eku nla	Brachystegia eurycom	Leguminosae - Caesalpinioideae
Flat crown albizia	Bonabona	Albizia adianthifolia	Leguminosae - Mimosoideae
Crab eye	Oju ologbo	Abrus precatorius	Leguminosae - Papilionoideae
Candle bush	Asunwon Oyinbo	Senna alata	Leguminosae - Caesalpinioideae

Table3. List of Medicinal Plants Used by the Traditional Healers in South-Western Nigeria in treating Diabetes

Source: Soladoye et al, 2012

Table4. List of Plants Used In the Treatment of Diabetes by Herbal Sellers in Enugu State South -East Nigeria.

PLANT NAME	LOCAL NAME	BOTANICAL NAME	FAMILY
Sweet orange	Oroma	Citrus sinensus	Rutaceae
Cocoyam	Akaso/ede/uli/ mmuo	Xanthosoma sagittifolium	Araceae
Black tumbler	Icheku	Dialium guinenses	Caesalpinacea
Locust beans	Ugba/ogiri	Parkia bigglobossa	Papilionace
Candle wood	Aga	Zanthocylum zanthoxyloides	Rutaceae
Shea butter	Osisi	Vitellaria paracloxum	Sapotaceae
Bitter kola	Adu/aku-inu	Garcinia kola	Clusiaceae
Curry leaf	Nchanwu	Thymus vulgaries	Lamiacea
Biter leaf	Onugbu/olubu	Vernonia amygdalina	Asteraceae
Kolanut	Orji	Cola nitida	Sterculiaceae
Alligator pepper	Ose-orji/okwa	Elaeis guineensis	Arecaceae
Palm kernel	Aku	Elaeis guineensis	Arecaceae
Fluted pumpkin	Ugwu	Telfairia occidentalis	Curcurbitaceae
Garden egg	Ayanra/afefea	Solanum melongena	Solanaceae
Avocado /pear	Ehuru	Persea americana	Lauraceae
Nutmeg	Ehuru	Myristica fragrans	Myristiceae
Pepper	Ose/totashi	Capsicum annum	Solanaceae
Okoro	Okwuru	Abelimoschus esculentus	Malvaceae
Plantian	Abrika	Musa paradisiaca	Musaceae
Banana	Ule/uneri	Musa nana/ sapientum	Musaceae

Source: Aiyeloja and Bello, 2006

DISCUSSION

Trado-medical knowledge of indigenous people worldwide has played a significant role in the identification of therapeutic agents. For example, Nigeria has been shown to be endowed with biodiversity of medicinal plants which are used in the African traditional system of medicine for the management of different diseases (Gbile and Adesina, 1987; Ajose, 2007). This study has shown that over 118 plants have been documented from different surveys across the country. This reflects that Nigeria is indeed endowed with wide biodiversity in spite unfavorable climatic

conditions in certain parts of the country as recognized by Scoones et al. (1995).

The following plants has been documented form the geo-political zones showing Southwest (23), North West (Sokoto) (48), north central (27) and south east (Enugu) (20). A possible explanation for this could be the vegetation belt to which each zone belongs to as well as annual rain fall of each zone. Other factors could be availability of research articles relevant to the field. Whereas case studies had to be implored in the case of Northwest and South East, materials could not be obtained for North East and South South. The reason could not be ascertained by the authors as at the time of compiling this paper. Plant species such as Alliumcepa, Veronia amygdalina and Allium sativum are common to both north and south. Despite these similarities however, there exists certain differences in their mode of preparation. In the north for instance most herbal drugs (mono or poly herbal) are sold in the powdered form (Shakir et al., 2015) where as crude liquid from maceration and decoction were sold in the market as herbal recipes in the south (Gbolade, 2009).

Similarly, a Comparative analysis of this study with other ethnobotanical surveys of plants used traditionally in treating diabetes in Mali (Besancon et al., 2005), Morocco (Besancon et al.,2005), North centre region of Morocco (Jouad et al., 2001), South Eastern Morocco (Tahraoui et al., 2007), Eastern Cape Province of South Africa (Erasto et al., 2005), Tanzania (Moshi and Mbwambo, 2002), and India (Subbulakshmi et al., 2001), revealed some similarities in the plants cited in these surveys.Out of the 211 plant species cited in this study, five (5) species: Aframomummelegueta, Azadirachta indica, Carica papya, Manihot esculenta and Vernonia amygdalina were also documented for the same purpose in North central region of Morocco (Jouad et al., 2001), South Eastern Morocco (Tahraoui et al., 2007) and India (Subbulakshmi et al., 2001). Similarly, in an ethno botanical survey conducted in Tanzania (Moshi and Mbwambo, 2002), two of the cited plants were also identified in this study (Carica papaya and Ficus *exasperata*). Vernonia *amygdalina* was the only plant species mentioned by informants Of the 14 plants documented as used in Eastern Cape province of South Africa (Erasto et al., 2005), while Parkia biglobosa and Citrus species cited in the study carried out in Sikasso Mali (Besancon et al., 2005) were also identified in this study. Phyllanthus amarus, Zingiber

officinale, Citrusaurantifolia, Momordica charantia and Carica papaya identified in this study have also been shown to be used traditionally in Trinidad and Tobago (Mahabir and Gulliford, 1997) for treating diabetes.

Experimentally, some of the plants cited in this study have been shown to possess antidiabetic properties. The antidiabetic activity of aqueous leaves of *Magnifera indica* had been reported by Aderibigebe et al. (1999), Matin et al. (2001) and Aunyachulee et al. (2017). Also the activity of *Vernonia amygdalina* aqueous leaves extract in rats was reported by Erasto et al (2005). The antidiabetic potentials of *Aframomum melegueta* (Chidi et al., 2016), *Caricapapaya* (Isela et al., 2012) and *Momordicachirantia* (Chatruvedi, 2012) have also been documented.

A large number of medicinal plants used in the treatment of diabetes have been documented. While Nigeria has not been completely left behind, there is a need to give more attention to the field of bio-exploration as a means of alternative medicine as the country presents a rich biodiversity with huge potentials.

CONCLUSION

The use of medicinal plants for disease management is an age long practice among humans. Nigeria possesses a rich bio-diversity with medicinal plant potentials. On regional basis, South-west Nigeria presents the highest number of plants documented in the treatment of diabetes. This is also the case as regards other parts of Africa such as north central Morocco, south eastern Morocco, Mali, Tanzania and Eastern Cape Province of South Africa. This reflects the need to give more attention to Bioexploration as well as drug development from the active ingredients of plants.

ACKNOWLEDGMENTS

The authors of this review work wish to acknowledge the Department of Biological Science, Federal University of Technology Minna, Niger State for their great support towards the success of this review paper.

REFERENCES

[1] Abubakar, M.S., Musa, A.M., Ahmed, A. and Hussaini, I.M., (2007). The Perception And Practice Of Traditional Medicine In The Treatment Of Cancers And Inflammations By The Hausa And Fulani Tribes Of Northern Nigeria. *Journal of Ethnopharmacology*111, pp625–629.

- [2] Achaya, D. and Shrivastava K., (2008). Indigenous Herbal Medicine: Tribal Formulations and Traditional Herbal Practices. *Aavishkar Publishers Distributors*, Jaipur, Indian. 440.
- [3] Adekunle, A.O. and Otolorin, E.O., (2000).Evaluation of the Nigerian population policy – myth or reality? *African Journal of Medical Science* 29, pp305–310.
- [4] Aderibigebe, A.O., and Emudianughe, B.A. (1999). Ant hyperglycemic Effect of Magnifera *Indica* in Rats. *Phototherapy Response*13, pp504-507.
- [5] Aiyeloja, A.A. and Bello, A.O., (2006). Ethno botanical potentials of common herbs in Nigeria:A Case Study of Enugu State. *Educational Research and Review* 1(1), pp16-22
- [6] Ajose, F.O., (2007).Some Nigerian plants of dermatologic importance. *International Journal* of Dermatology 46 (11), pp48–55.
- [7] Aunyachulee G., chanida P. and Nijsiri R., (2017). Antidiabetic and anticancer effect of magnifera indica cv. Okrong leaves Journal of Advanced Pharmaceutical Technology 8(1) pp19-24
- [8] Ayodhya, S., Kusum S., and Saxena, A., (2010). Hypoglycaemic Activity of Different Extracts of Various Herbal Plants. *International Journal of Resource in Ayurveda Pharmaceuticals* 1, pp212.
- [9] Besancon, S., Maiga, M., Berthe, D. and Diarra, A., (2005). Articulation medicine moderne et medicine traditionally dans la prise en charge du diabetes sucre dan le cercle de Sikasso. Appui au developement, Sant ´ e Diab ´ ete Mali ` (SDM) (http://www.sante diabetemali.org).
- [10] Brownlee, M., (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414 pp813-20. Testing, and Artemisin In-Based Combination Therapy for Children under Five with Fever in Northern Nigeria: a crosssectional study. *Malaria Journal* 13, pp447.
- [11] Chatruvedi, P., (2012). Antidiabetic Potentials of Momordica *chirantia*: multiple mechanism behind effects. *Journal of Medcine and Food* 15(2) pp101-107
- [12] Chidi N., Stanley O., Chukwuma A., Chieme C., and Chijindu N. (2016). Responses of Liver and Pancreatic Cells To Ethanolic Seed Extract Of Aframomum *melegueta* In Alloxan-Induced Diabetic Rats *Journal Of Medicinal Plant Science* 4(5): pp112-116
- [13] Donga, J.J., Surani, V.S., Sailor. G.U., Chauhan, S.P. and Seth A.K., (2011). A Systematic Review on Natural Medicine Used For Therapy of Diabetes Mellitus of Some Indian Medicinal Plants. *International Journal Pharmaceutical Science* 2(36).
- [14] Erasto, P., Adebola, P.O., Grierson, D.S., Afolayan, A.J., (2005). An ethno botanical study

of plants used for the treatment of diabetes in the Eastern Cape Province South Africa. *African Journal of Biotechnology* 4, pp1458–1460.

- [15] Erato, P., Adebola, P.O., Grierson, D.S. and Afolayan, A.J. (2005). An ethno botanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. *African Journal of Biotechnology* 4, pp1458-1460.
- [16] Gbile, Z.O. and Adesina, S.K., (1987). Nigerian flora and its pharmaceutical potential. *Journal of Ethno pharmacology* 19, pp1–16.
- [17] Gbolade, A.A., (2009). Inventory of Anti-Diabetic Plants in Selected Districts of Lagos State, Nigeria. *Journal of Ethno pharmacology* 121, pp135–139.
- [18] Grover, J.K., Yadav S., and Vats, V., (2002). Medicinal plants of India with anti-diabetic potential. *Journal of Ethno pharmacology* 81, pp81-100.
- [19] Ibrahim, AM, Lawal, B, Abubakar, AN, Tsado, NA, Kontagora, GN, Gboke, GA, Berinyuy, EB. (2017). Antimicrobial and Free Radical Scavenging Potentials of *N*-Hexane and Ethyl Acetate Fractions of *Phyllanthus Fraternus*. Nigerian Journal of Basic and Applied Science, 25(2): 06-11.
- [20] Igoli, J.O., Ogaji O.G, Tor-Anyiim T.A., Igoli N. P.(2005). Traditional medicine practice amongst the igede people of Nigeria. Africa journal Traditional complement. (2) pp 134-152.
- [21] Isela E., Juan C., Jorge L., Pedro H , Andrés E ,Carlos A , Arturo R., HidemiA.,Teresa R. and Deysi Y (2012). Hypoglycemic effect of carica papaya leaves in streptozotocin –induced diabetic rats. BMC Complement Alternative medicine 12 pp236
- [22] Jouad, H.M., Haloui, M.H., Rhiouani, H., El Hilaly, J.M., Eddouks, M., (2001). Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). *Journal of Ethno pharmacology* 77, pp175–182.
- [23] Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, Alozieuwa BU. (2015). Potential antimalarials from African natural products: A review. J. Intercult Ethnopharmacology 4(4):318-343
- [24] Lawal, B., Shittu, O.K., Oibiokpa, FI, Berinyuy, EB., Muhammed, H. (2016). African natural products with potential antioxidants and hepatoprotectives properties: a review, *Clinical Phytoscience*, 2:23, 1-66
- [25] Lifongo, L.L., Simoben, C.V., Ntie-Kang, F., Babiaka, S.B. and Judson, P.N., (2014). A Bioactivity versus Ethno-Botanical Survey of Medicinal Plants from Nigeria, West Africa. *National Production Bio- Prospecting* 4, pp1–19.

- [26] Mahabir, D., and Gulliford, M.C., (1997). Use of medicinal plants for diabetes in Trinidad and Tobago Revista. Panamericana de la Salud/Pan American. Journal of Public Health 1, pp174–179
- [27] Matin, A., Khon, M. A., Ashraf, M. and Qureshi, R. A. (2001). Traditional use of Herbs, Shrubs and Trees of Shogran valley, Mansehra. *Pakistan Journal of Biological Science*, 4 (9): pp1101-1107.
- [28] Mehdi, U. and Toto, R. D., (2009). Anemia, Diabetes, and Chronic Kidney Disease. *Diabetes Care* 32, pp1320-1326.
- [29] Millar, K.R., Mccutcheon, J., Coakley, E.H., Brieger, W., Ibrahim, M.A., Mohammed, Z., Bassi, A., and Sambisa, W., (2014) .Patterns And Predictors Of Malaria Care-Seeking, Diagnostic
- [30] Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S. and Devasagayam, T.P., (2007). Indian Herbs and Herbal Drugs Used For the Treatment of Diabetes. *Journal of Clinical Biochemical Nutrition* 401, pp63-73.
- [31] Moshi, M. J. and Mbwambo, Z. H. (2002). Experience of Tanzanian traditional healers in the management of non-insulin dependent diabetes mellitus. *Pharmaceutical Biology journal*. (40) pp 552-560.
- [32] Ogurtsova, K., Da, J. D., Rocha, F., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E. and Makaroff L.E., (2107) IDF. Diabetes Atlas: Global Estimates for the Prevalence of diabetes for 2015 and 2040. *Diabetes research and clinical practice* 128 (2017), pp40 –50
- [33] Onakpa, M.M. and Owoleke, O.E., (2010). A Survey Of Medicinal Plants Used For The Management Of Diabetes Mellitus In North Central Nigeria. *International Journal of Applied Biology* and Pharmaceutical Technology I (3) pp20.
- [34] Oyedemi S.O., Bradley G., Afolayan A.J. (2009). Ethnobotanical survey of medicinal plants used for the management of diabetes mellitus in the Nkonkobe municipality of South Africa. J. Med. Plants. Res. 3: 1040-1044.

- [35] Povi L., Kwashie E., Amegona A., Kadojo A., and Messanvi G. (2011) Antidiabetic Activity of Phyllanthus Amarus Schum and Thonn (Euphorbiaceae) On Alloxan Induced Diabetes In Male Winstar Rats. *Journal of Applied Sciences* 11(16) pp2968-2973
- [36] Scoones, I., (1995). Living with uncertainty, new directions in pastoral development in Africa. London, pp1-36.
- [37] Shakir, A.S., Amal, F., Mohammad O., Fatima A. and Abdulaziz A.(2015) The flavonoid, rutin, ameliorates neurodegeneration in the retina of diabetic rats. *Journal of Immunology*. (194): pp 21-48.
- [38] Soladoye, M. O., Chukwuma, E. C. and Owa, F. P., (2012). An 'Avalanche' of Plant Species for the Traditional Cure of *Diabetes mellitus* in South-Western Nigeria. Scholars Research Library *Journal of Natural Products Plant Resource*, 2012, 2 (1) pp60-72
- [39] Subbulakshmi, G., and Mridula, N., (2001). Indigenous foods in the treatment of diabetes mellitus. *Bombay Hospital Journal* Hospital Reviews 43.
- [40] Tahraoui, A., El-Hilally, J., Israili, Z.H., Lyoussi, B., (2007). Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in South-eastern Morrocco. *Journal of Ethno pharmacology* 110, pp105–117.
- [41] Tijjani, S., Shinkafi, Lawali, B., Sanusi W.H. and Shakir, A., (2105). An Ethnobotanical Survey of Anti-Diabetic Plants Used By Hausa–Fulani Tribes in Sokoto, North-West Nigeria. *Journal of Ethnopharmacology*172 pp91–99.
- [42] World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. Geneva: World Health Organization.

Citation: Faruq U. P., Ezikanyi G.K., Abdulmajid S., Babalola BS., Alawode R.A, Abdulkareem M., Musa R., Omebo K.I., Adeniyi A.K, "Ethno-Botanical Survey of Plants with Antidiabetic Properties Used by Traditional Practitioners in Nigeria", Journal of Biotechnology and Bioengineering, 3(3), 2019, pp 17-23.

Copyright: © 2019 Faruq U. P., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.